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We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with
damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low
viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an
attenuating solitary wave, dominated by discreteness and nonlinearity effects as in a dissipationless chain, and
has the shorter lifetime. The other is a purely dissipative shocklike structure with a much longer lifetime and
exists only in the presence of dissipation. The range of viscosities and initial configurations that lead to this
complex wave disturbance are explored.
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I. INTRODUCTION

Granular chains under impulse loading are known to sup-
port a rich variety of excitations �1–6�. The precise nature of
the excitations depends on a number of features that include
the particular granular configurations, state of precompres-
sion, dimensionality, shape of initial disturbance and, of par-
ticular interest to us in this work, viscosity. Consider first the
behavior of a monodisperse one-dimensional chain in which
the granules are placed side by side, just touching but with-
out precompression. A velocity v0 imparted to a single grain
quickly evolves into a solitary wave carrying energy whose
dynamical evolution depends on the nature of the granules.
In particular, for elastic spherical grains one obtains a soli-
tary wave that resides on about 5–7 granules and whose ve-
locity depends on its amplitude �1�.

We are interested in the effect of viscosity on the propa-
gation of such an initial excitation. There are a number of
different sources and descriptions of viscous effects �7–13�,
and in �5� we studied the dynamics of a pulse in one such
case, when the granular chain is immersed in a viscous me-
dium that gives rise to a Stokes drag proportional to grain
velocity. Here we consider the more prevalent situation in
which the viscosity arises from the interaction between the
grains as one grain rubs against another, expanding on our
earlier results for this case �6,14,15�. Here the dissipative
contributions are proportional to the relative velocities of
grains in elastic contact. It should be noted that in experi-
ments on a chain immersed in some liquids the main dissi-
pative contribution was also found to be proportional to the
relative velocities of grains �rather than a Stokes drag term�
due to the expulsion of liquid from the area of developing
elastic contact �14�. While the former viscous interaction
leads to energy and momentum loss to the medium, the latter

involves only internal dissipative forces and is consequently
momentum conserving. If there were only binary collisions
in the chain, the momentum conserving dissipation would be
one possible dynamical description of the usual parametrized
coefficient of restitution �16�.

Our model is the simplest example of a strongly nonlinear
discrete system that can be verified experimentally. It con-
sists of a chain of granules that interact via the purely repul-
sive power-law potential

V��k,k+1� =
a

n
���k,k+1

n , � � 0,

V��k,k+1� = 0, � � 0, �1�

where

�k,k+1 � yk − yk+1. �2�

Here a is a prefactor determined by Young’s modulus E,
the Poisson ratio �, and the principal radius of curvature
R of the surfaces at the point of contact �16,17�; yk is the
displacement of granule k from its equilibrium position. The
exponent n depends on the shapes of the contacting surfaces.
For spherical granules �Hertz potential� n=5 /2 and
a= �E /3�1−�2���2R �17�. The force between two grains is
nonzero only when the grains are in contact, and consists of
the mechanical force which is the negative derivative of the
potential, and a viscous force that is proportional to the rela-
tive velocity of the interacting granules. We introduce the
rescaled position xk, time t, and viscosity coefficient � used
in Refs. �5,6�,
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xk =
yk

b
, t =

v0�

b
, � = �̃

b

mv0
, b � �mv0

2

a
	1/n

, �3�

where yk, �, and �̃ are the corresponding unscaled quantities.
The equation of motion for the kth grain then takes the form

ẍk = ���ẋk+1 − ẋk� − �xk − xk+1�n−1�	�xk − xk+1� + ���ẋk−1 − ẋk�

+ �xk−1 − xk�n−1�	�xk−1 − xk� , �4�

where a dot denotes a derivative with respect to t. The
Heaviside function 	�y� ensures that the elastic and the vis-
cous grain interactions exist only if the grains are in contact.
Note that in this scaled equation of motion the constant a as
well as the mass have been scaled out, and the initial velocity
imparted to a grain is now unity. In the absence of viscosity
an initial impulse given to one grain of the chain of other-
wise resting grains placed side by side quickly settles into a
forward propagating stationary pulse that is increasingly nar-
row with increasing n�2. As we will show, and as one
might expect, the viscosity results in an overall exponential
energy dissipation. In a viscous medium, if a Stokes drag is
the dominant source of dissipation, this is essentially all that
the viscosity does �5�, so that the pulse simply keeps moving
without changing its shape but with a decreasing amplitude
�and consequently velocity�. Remarkably, in the present situ-
ation with dissipation determined by the relative velocity of
grains the behavior is entirely different. Below a critical vis-
cosity, there is a steady removal of energy from the pulse,
part of which contributes to the formation of a long tail cre-
ated behind it from which energy is dissipated much more
slowly. The removal of energy from the leading pulse is
rapid because, being very narrow, it has large velocity gradi-
ents, The long tail that evolves behind it loses energy far
more slowly because the velocity gradients there are very
small �6�.

Exact analytic solutions to the equations of motion �4�
appear unattainable, and so in this work we rely heavily on
numerical simulations, with analytic arguments where pos-
sible. In Sec. II we present a detailed study of the propaga-
tion of an impulse along a viscous chain when the granules
are initially placed side by side with no gaps and no precom-
pression. In Sec. III we explore the effects of an initial pre-
compression on the propagation of the impulse, and briefly
comment on the effects of initial gaps. A summary of our
findings is presented in Sec. IV.

II. DYNAMICS WITH NO PRECOMPRESSION
AND NO GAPS

Consider a granular chain in which the granules are
placed side by side, just touching but without precompres-
sion. This situation is referred to in Ref. �2� as a “sonic
vacuum” because such a system does not support sound
waves. In the next section we will relax this condition. A
velocity is imparted to a single grain at one end of the chain.
Below a critical viscosity, after a short time in which a small
amount of energy is lost through some back-scattering of
nearby granules in the wake, almost all of the impact energy
resides in a forward traveling wave that has an unusual two-

part structure which is formed very rapidly and comes about
as follows �6�. A pulse similar to a narrow solitary wave
caused by the strongly nonlinear forces in the discrete me-
dium is generated. This “primary pulse,” being spatially very
narrow, exhibits high velocity gradients that lead to a loss of
its energy. Some of the lost energy is simply dissipated, but
part of the energy of the leading pulse goes into a quasistatic
compression that appears behind the primary pulse because
the forward displacements of the particles closer to the im-
pacted end are larger than the corresponding displacements
of particles further away from this end due to the attenutation
of the velocity of the particles in the propagating wave. This
compression, and the associated pulse that arises as a result
�“secondary pulse”�, are entirely dependent on the presence
of dissipation. As a result, this two-wave structure is not
observed in the usual dissipationless models. The secondary
pulse is very broad and is therefore far more persistent than
the primary pulse because it has much smaller velocity gra-
dients. A typical progression with time of the velocity profile
for a small viscosity is shown in Fig. 1. The figure exhibits
all the characteristics discussed above, specifically, the nar-
row decaying primary pulse and the evolving secondary
pulse. A more detailed discussion of this figure will be pre-
sented later.

The total energy of the system as a function of time is
shown in the inset in Fig. 2 for two values of n and three
values of �. In our scaled units, the initial energy is 1 /2. The
attenuation of the energy of the “primary” and “secondary”
portions for the case n=5 /2 and �=0.01 is shown in Fig. 2,
demonstrating the separation of time scales for energy dissi-
pation. The primary pulse is a highly nonstationary portion
of the wave that exhibits a steep exponential decay of the
energy. The energy dissipation slows down drastically as the
primary pulse vanishes and only the more persistent second-
ary pulse remains. Dissipation of energy in the rapid decay
regime is faster for higher n. This behavior is due to the
larger velocity gradients in the primary pulse whose width
decreases with increasing n �2�.

100 200 300 400
k

0

0.02

0.04

0.06

0.08

v

330 340 350 360
k

0

0.005

0.01

0.015

v

FIG. 1. Time snapshots of the velocity profile for small viscosity
��=0.02�. The progression of the profile is easily recognizable as
the composite pulse moves forward, the secondary pulse steepens,
generating oscillatory behavior, and the primary pulse disappears.
The times are 500, 900, and 1400 and n=5 /2. Inset, detailed view
of the crest of the velocity profile at time 1400.
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To set the stage for further discussion, we recall the suc-
cessful treatment of this problem in the absence of dissipa-
tion based on a long-wavelength approximation �1–3,5�. This
analysis, based on a continuum description, is extremely suc-
cessful despite the fact that the pulse is very narrow in the
underlying discrete system, i.e., in spite of the fact that a
continuum approximation assumes that the particle charac-
teristic length is much smaller than the wavelength, which in
fact it is not. For large n, when the pulse is extremely narrow,
a decidedly discrete binary collision approximation works
even better �18�, but the continuum approximation still
works well at least qualitatively. Some of the effects of dis-
creteness are captured by expanding xk
1 about xk in a Taylor
series up to fourth order �the usual second order expansion
would of course not capture any such effects�. The con-
tinuum equation is obtained by neglecting the one-sidedness
of the potential, that is, ignoring the fact that there are no
attractive forces in the problem. This works because the so-
lution is assumed to apply only to the compressed portion of
the chain, and to be identically equal to zero outside of this
region. The equation of motion for n�2 obtained in this way
is �2�

�2x

�t2 =
�

�k

− �−

�x

�k
	n−1

+
n − 1

24
�−

�x

�k
	n−2�3x

�k3�
−

1

24

�3

�k3
�−
�x

�k
	n−1� . �5�

This equation admits a solution of the form �2�,

�−
�x

��
	 = A0 sinm �� , �6�

where �=k−c0t, c0 is the pulse velocity, and

m =
2

�n − 2�
, � = �6�n − 2�2

n�n − 1� 	
1/2

, c0 = �2

n
	1/2

A0
�n−2�/2.

�7�

A solitary wave is constructed by retaining this solution over
one period, 0���k−c0t��, and setting �x /�� equal to zero
outside of this range. This solution does not satisfy the ve-
locity pulse initial condition because it is meant to describe
the system after a short initial transient whereupon it settles
into this traveling configuration. One can go further and take
advantage of the fact that almost all of the initial energy
resides in this pulse �an extremely small portion is lost to
back-scattering �3,5��. Using conservation of energy argu-
ments and dealing carefully with the fact that due to nonlin-
earity the kinetic �K� and potential �U� energies are not equal
but instead obey a generalized equipartition theorem �19�,
one further finds that K /U=n /2 so that K=n / �2�n+2��. The
kinetic energy can be calculated directly by explicit integra-
tion,

K = �
0

/2�

ẋ���d� =
c0

2A0
2

2�
I� 4

n − 2
	 , �8�

where

I�s� = �
0



sins 	d	 = 2s

�2� s + 1

2
	

��s + 1�
. �9�

This result together with the generalized equipartition theo-
rem then leads to explicit values for c0 and A0. In particular,
for spherical granules we find c0=0.836 and A0=0.765 �5�.

In the presence of dissipation, a similar expansion of the
equations of motion �4� leads to an additional contribution in
the continuum problem,

�2x

�t2 − �
�2

�k2� �x

�t
	 =

�

�k

− �−

�x

�k
	n−1

+
n − 1

24
�−

�x

�k
	n−2�3x

�k3�
−

1

24

�3

�k3
�−
�x

�k
	n−1� . �10�

Unfortunately, we have not found an exact solution to this
equation, especially one that at low viscosities captures the
two contributions to the solution whose features we have
described on the basis of numerical simulations. In the fol-
lowing two sections we discuss the dynamics of this solution
mainly on the basis of simulations. At low viscosities, this
discussion is reasonably organized into a separate discussion
for each of the two portions of the excitation, the primary
and the secondary pulses, because their evolution and decay
involves such disparate time scales. However, we wish to
stress that in spite of this separation, the pulse is one entity
that consists of two interdependent parts rather than a super-
position of two independent entities. Furthermore, clearly
identifiable primary and secondary pulses occur only if the
viscosity is sufficiently small. This point, as well as the be-
havior at higher viscosities, will be described in more detail
below.
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FIG. 2. Breakdown of the total energy �solid line� into portions
associated with the primary pulse �dotted line� and the secondary
pulse �dashed line� for n=5 /2 and �=0.01. Inset, time evolution of
the total energy, where two sets of three curves are shown, corre-
sponding to n=2.2 �upper set� and 2.5 �lower set� in the Hertz
potential. Each set shows results for �=0.01 �dotted line�, 0.005
�dashed line�, and 0.001 �solid line�. The early rapid decay mainly
reflects the rapid energy loss of the primary pulse. The remaining
energy stored in the secondary pulse eventually dissipates on a
much longer time scale.
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A. Primary pulse

As in the dissipationless case, the primary pulse forms
quickly following the initial velocity impact due to the strong
nonlinearity and dispersion. The pulse travels along the chain
with diminishing speed �and with an evolving tail� since its
amplitude decreases due to dissipation. As noted above and
as is apparent in Fig. 2, the loss of energy due to dissipation
is initially essentially exponential as long as the energy is
mainly stored in the primary pulse. While we know that it
cannot be the entire solution because it does not account for
the secondary pulse, we assume a solution of the form Eq.
�6� but with a time-dependent amplitude and velocity. This
captures the behavior of the primary pulse if it retains its
shape as it loses energy, and is at best expected to hold as
long as there is a prominent primary pulse, that is, for times
�t�1,

�−
�x

��
	 = A�t�sin2/�n−2� ���k,t� , �11�

where

��k,t� = k − �
0

t

c�t�dt �12�

and

c�t� =�2

n
A�n−2�/2�t� . �13�

We may speculate that this approach is valid as long as the
strong nonlinearity and dispersion are more or less balanced
as in a nondissipative chain, which is the case for the pri-
mary pulse. To choose a specific functional form for A�t� we
must rely on the simulation results and observe that to times
of order �t1 the decay of the energy, as exhibited in Fig. 2,
is exponential. This is confirmed in more detail in Fig. 3,
where it is evident that for all the values of n and � in the
figure the decay is well described by an exponential. Further-
more, the slope is fairly insensitive to the value of �, so at
least to a first approximation the energy decays as e−2u�t

where u is a constant �and the 2 is introduced for conve-
nience�. While the notation E in Fig. 2 indicates the total
energy and the notation EP in Fig. 3 indicates the primary
pulse energy, at the early times of Fig. 3 they are essentially
the same. The decay of the amplitude and the pulse velocity
with the assumed form Eq. �11� then are

A�t� = A0e−2u�t/n, c�t� = c0e−�n−2�u�t/n, �14�

and therefore

��k,t� = k − c0
n

u��n − 2�
�1 − e−�n−2�u�t/n� . �15�

The validity of the assumed form for the primary pulse
can be tested numerically in a number of ways. For instance,
our trial solution predicts that the position of the maximum
of the pulse should be �5�

kmax =


2�
+

c0

�u

n

�n − 2�
�1 − e−nu�t/�n−2�� . �16�

In Fig. 4 we compare this prediction with the numerical re-
sults. According to Eq. �16�, the curves corresponding to
different values of � should collapse for each n, and indeed
we have a clear collapse. Moreover, using the values of u
obtained from the energy decay, we observe excellent agree-
ment. As a test of the continuum approximation concept, we
have included results for the very high value n=7. Here we
observe a deviation between the numerical results �symbols�
and the solid curve obtained from Eq. �16� with u determined
from the energy decay curve and c0 obtained via the con-
tinuum approximation. For this large value of n the pulse is
extremely narrow, and so we tested an alternative binary col-
lision approximation in which we assume that only two gran-
ules are involved in a collision at any one time �18�. With c0
calculated from this approximation we obtain the dotted line,
which is in excellent agreement with the simulations. We
stress that in any case the curve collapse predicted by the
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FIG. 3. The primary pulse energy decays exponentially, as
e−2u�t, with time. From top to bottom, the three groups of lines
correspond to n=3, 5 /2, and 2.2. For each n, there are three values
of �, 0.01 �dotted line�, 0.005 �dashed line�, and 0.001 �solid line�.
The slopes of the curves change slightly with � but are equal within
a 10% margin �u=0.20
0.02 for n=2.2, u=0.46
0.02, for n
=5 /2, and u=0.70
0.03 for n=3�.
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FIG. 4. Position of the grain with maximum velocity as a func-
tion of time for the same values of n �upper three groups� and �
�0.001 plus signs, 0.005 crosses, and 0.01 stars� as in Fig. 3. The
lowest group of curves is for n=7. Here, k0= 

2� . The solid lines are
the theoretical predictions according to Eq. �16�. The dotted curve
for n=7 is obtained from the binary collision approximation.
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form �16� is observed for all the values of n and � exhibited
in the figure. This confirms that the pulse position is indeed
an exponential function of �t.

While Fig. 3 shows an exponential decay of the energy of
the primary pulse with time, there is a small spread in the
slope of the logarithm EP vs �t, indicative of a mild � de-
pendence of u on �. We thus write more accurately

EP  e−2u����t. �17�

The dependence of u on �, which is essentially linear and
indeed mild, is seen in Fig. 5. We also confirm our ubiqui-
tous assumption that the total energy and the energy in the
primary pulse are essentially equal up to times of order
�t1. This is shown in Fig. 6, where we plot the total en-
ergy �on a logarithmic scale� vs 2u����t. The deviations
from this behavior that set in beyond these times are greater
for larger viscosities.

B. Secondary pulse

Returning to Fig. 1, we follow the continuing history of
the excitation. Above we have described the behavior of the

primary pulse during the course of its existence. The figure
illustrates the evolution of a long-lived secondary pulse dur-
ing this time interval. This secondary pulse, also being a
nonlinear disturbance, continues to change in shape. The
pulse steepens �becoming more and more asymmetric� as its
peak travels faster than the bottom right of the peak. Note
that the primary and secondary pulses have comparable am-
plitudes even while they are still distinguishable before the
primary pulse dissipates. When the secondary pulse is suffi-
ciently steep, dispersion begins to prevail and the front dis-
plays oscillatory structure with peaks that are a few grains
wide. This is shown in the inset of Fig. 1. The secondary
pulse is shocklike, with velocities of the grains in the pulse at
least an order of magnitude smaller than the pulse phase
speed.

Figures 7 and 8 detail the behavior of the secondary pulse
while the primary pulse has not yet disappeared. At first the
secondary pulse moves more slowly than the primary, but
this trend reverses as the primary pulse slows down with its
loss of energy and the peak of the secondary pulse acquires
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FIG. 5. Energy decay exponent. The symbols represent the re-
sults of the fitting of the primary pulse exponential energy decay
and the line 2u���=0.956 464−4.314 51�, which is the best linear
fit of those points.
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FIG. 6. �Color online� Early total energy decay for n=5 /2. The
line is the expected behavior according to our hypothesis E
= �1 /2�exp�−2u����t�, while the different symbols represent the en-
ergy decay for different values of � ranging from 0.01 �lowest
curve� to 0.039 �highest curve�.
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FIG. 7. Snapshots of the velocities of the grains at early times
ranging from 40 to 95 in steps of 5 in nondimensional units �n
=5 /2 and �=0.005�. The abscissa is the moving variable ��t��k
−�0

t c�t�dt, where c�t� is the time-dependent velocity of the primary
pulse, and k denotes the granule in the chain. Eventually the pri-
mary pulse and the compression behind it vanish and the secondary
pulse continues to move at an essentially constant velocity.
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FIG. 8. �Color online� Snapshots of the velocity profiles of the
secondary pulse for n=5 /2 and �=0.01 at different times, with
increase upward on the left-hand side of the pulse and downward on
the right-hand side, consistent with the steepening of the pulse with
time. The abscissa is now the moving variable with respect to the
essentially constant velocity of the peak of the secondary pulse.
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an essentially constant velocity. Both figures show that the
secondary pulse is asymmetric, generating an extremely per-
sistent tail of essentially equal velocity granules behind it
�not shown explicitly in the figures�. This asymmetry sharp-
ens with time, as is made evident in Fig. 1.

The velocity of the peak of the secondary pulse is con-
stant throughout this early portion of its history, as seen
clearly in Fig. 8, where the abscissa for all the times shown is
scaled with the same velocity cs. It is furthermore extremely
interesting that this peak velocity can be associated with a
“speed of sound” in the following sense �even though this
system in the initial uncompressed state is a sonic vacuum
�1,2��. That is, if k denotes the position of the grain with
maximum velocity, we observe that the velocities of grains k
and k+1 are related as

vk�t� = vk+1�t +
1

cs
	 � vk+1�t� + v̇k+1�t�

1

cs
, �18�

where the speed cs is expressed in units of grains per unit
time, and the approximation follows from a Taylor series
expansion to first order. Therefore, the relative velocity vk

�R�

=vk−vk+1 can be written as

vk
�R� = v̇k+1

1

cs
. �19�

Further, we can thus write

cs�vk
�R� − vk−1

�R� � = v̇k+1 − v̇k. �20�

Since the medium is precompressed �because of the first
pulse�, we may linearize Eq. �4� �2�

v̇k = − �n−1 + �� + vk−1
�R� 1

cs
	n−1

� �n−2�n − 1�
vk−1

�R�

cs
, �21�

v̇k+1 = − �� − vk
�R� 1

cs
	n−1

+ �n−1 � �n−2�n − 1�
vk

�R�

cs
,

�22�

where ��xk−xk+1 is the compression. Hence,

cs�vk
�R� − vk−1

�R� � = �n − 1�
�n−2

cs
�vk

�R� − vk−1
�R� � , �23�

so that the sound speed is finally given by �see Eq. �1.114� in
�2��

cs = ��n − 1��n−2. �24�

We can compare the speed of sound based on Eq. �24� using
� obtained from numerical simulations, and the speed of the
secondary pulse maximum, also obtained directly from nu-
merical simulations. Figure 9 shows the agreement between
the two to be excellent, as do the representative values in
Table I. The figure and the table exhibit this agreement via
the dependence of these two speeds on �, which is the pa-
rameter that determines the precompression � behind the
primary pulse. The variation of the speeds with � obtained
from the numerical results by a best fit goes as �0.24. The
dramatic agreement observed in the figure is also found for

other values of n, as illustrated in Table I. As � increases, the
time it takes for the second pulse to “catch” the first one
decreases and it becomes difficult to obtain the sound speed.
Therefore, we are only able to exhibit this speed for small
viscosities.

Consider next the energy in the secondary pulse. The in-
crease in this energy is observed to be of the form
B�1−e−2u�t�, where B depends on n and � and is the maxi-
mum energy of the secondary pulse. More accurately,

ES�t� = B����1 − e−2u����t� . �25�

In Fig. 10 we plot B��� as a function of � for n=5 /2, show-
ing a fairly linear dependence. However, although the trend
is captured when we plot ES�t� /B��� vs 2u����t as in Fig.
11, we do not observe a clean collapse as predicted by Eq.
�25�, indicative of a more complex � dependence. In any
case, the secondary pulse reaches its maximum value over a
time scale of order �t1 and then remains essentially con-
stant over a much longer time scale, although eventually its
energy will also be dissipated.

C. Higher viscosities

The detailed results presented to this point are associated
with small values of �. In this regime it has been reasonable
to speak of two pulses as though they were separate entities,

TABLE I. Comparison of secondary peak pulse velocity and cs

calculated from the precompression for two values of the potential
exponent n and various values of the dissipation parameter.

n=2.2 n=2.5

� Pulse vel. cs � Pulse vel. cs

0.001 0.56 0.55 0.001 0.25 0.25

0.005 0.66 0.66 0.005 0.38 0.38

0.01 0.71 0.71 0.01 0.44 0.44
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c s
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FIG. 9. The plus signs show the sound speed for different values
of � in the precompressed region behind the primary pulse as found
from Eq. �24� and numerical simulation results for the precompres-
sion � when n=5 /2. The circles show the maximum of the second-
ary pulse for n=5 /2, also obtained directly from numerical simula-
tions. The line represents a power-law best fit to the data �the
difference between fitting the circles and the plus signs is
negligible�.
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the primary being mainly due to nonlinearity and discrete-
ness, and the secondary caused mainly by dissipation and
nonlinearity. Nevertheless, it is not inappropriate for these
low viscosities to speak of a “separation” of pulses. The
primary pulse causes the precompression that underlies the
secondary pulse, and in this sense both together are a single
entity. Summarizing this regime, for small viscosities
���0.03� the secondary pulse reaches a critical slope for
transition to an oscillatory profile before catching the pri-
mary pulse, while the primary pulse loses almost all of its
energy before being absorbed by the secondary pulse �Fig. 1;
the oscillatory shock profile first emerges when the second-
ary pulse is in the vicinity of particle 300, not shown in the
figure�. Note that a critical viscosity for a transition from an
oscillatory to a monotonous profile of a shock wave is found
in �15�. We have observed that in this small-� regime the
maximum velocity in the secondary pulse increases with in-
creasing viscosity because larger dissipation is associated
with a greater compression, resulting in a secondary pulse of
higher amplitude. For very small � ��0.002� the secondary
pulse has an almost imperceptible amplitude on our numeri-
cal scale �and of course it disappears entirely when �=0�,
and the primary pulse has a very long life. However we do
not find a transition to a regime without a secondary pulse
for any finite value of �. The secondary pulse fades away
smoothly with diminishing �.

For intermediate viscosities �0.04���0.07� the second-
ary pulse catches up with the primary pulse while the pri-
mary pulse still has an amplitude comparable to the second-
ary �upper panel of Fig. 12�. As in the previous case, after the
first pulse disappears, the secondary pulse propagates as a
shocklike wave with an oscillatory front caused by the dis-
persion.

For large viscosities ���0.07� there is no clear distinc-
tion between the primary and secondary pulses. Actually, for
viscosities ��0.1 it is no longer appropriate to think of two
separate pulses �lower panel of Fig. 12�. From almost the
beginning, there is a single shocklike structure of dissipative
origin with a sharp monotonic front. Nevertheless, it should
be noted that the first pulse is always evident, albeit for a
very short time. In Fig. 13 we see that it takes about four
granules for it to develop fully, and that the dynamics up to
10 grains or so is always the same, that is, the shape of the
pulse and the time it takes to develop are essentially the same
for viscosities ranging from 0 to 0.1. After this early time
either the second pulse appears behind the first pulse �small
��, or the first pulse appears to be essentially deformed into
the second pulse �larger ��.
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FIG. 10. Secondary pulse energy saturation constant for
n=5 /2. The symbols represent the results of fitting Eq. �25�, and the
line B���=0.003 246 36+0.217 601� is the best linear fit for these
points.
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FIG. 11. �Color online� Collapse of the energy behind the pri-
mary pulse for n=5 /2 and different values of �. The line is
1−e−2u����t, the behavior according to the hypothesis equation �25�,
while the symbols represent the simulation results.
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FIG. 12. Upper panel: Snapshots of the velocity profile for in-
termediate viscosity ��=0.04, n=5 /2� at different times, 140, 220,
and 400. Lower panel: Snapshots of the velocity profile for large
viscosity ��=0.1, n=5 /2� at different times, 100, 300, and 500.
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FIG. 13. �Color online� Early dynamics. The first pulse always
occurs at early times. At the beginning, the only role of the viscosity
is to dissipate energy. The shape of the pulse and the time it takes to
develop it is the same for � ranging from 0.01 to 0.1
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III. DYNAMICS WITH PRECOMPRESSION
AND WITH INITIAL GAPS

The results presented up to this point deal with a chain in
which the granules are initially placed side by side, with no
precompression and with no gaps �i.e., a sonic vacuum
�1,2��. In this section we explore the consequences of relax-
ing these assumptions. In particular, we explore the way in
which a variation in the initial placement of granules modi-
fies or otherwise distorts the two-component wave distur-
bance discussed above. Based on numerical simulations, we
present these effects through a series of figures.

The first of these figures, Fig. 14, is simply a recap of
previous results that facilitates our discussion. In this figure
there is no precompression, and we show the grain compres-
sion wave structure at a particular instant of time after
50 000 iterations as the damping increases. At extremely low
damping there is a solitary wave accompanied by an ex-
tremely low amplitude secondary wave that is not visible on
the scale of the figure. As the viscosity increases, the second-
ary pulse behind the primary pulse becomes more prominent.
Increasing the viscosity further leads to a single shock-type
pulse �the primary pulse has already disappeared�, with a
wider shock front at the larger viscosity.

Next we explore the consequences of precompression,
which qualitatively changes our system from a sonic vacuum
to a more traditional discrete system with finite sound speed.
We ensure mechanical equilibrium by applying appropriate
static forces to the end particles of the chain. The next three
figures show progressions of increasing viscosity at a given
precompression. Viscosity increases from one figure to the
next �note the different y-axis scales in the three figures�.
Figure 15 shows the changes introduced by a very small
precompression. The features illustrated in Fig. 14 are re-
peated in this figure at the same instant of time, specifically
the presence of a primary and a secondary pulse when the
viscosity is small, and, at higher viscosities the single shock-
type pulse of increasing front width as viscosity increases.
The new feature here, namely, the rarefaction wave and the
tail of attenuating compression peaks propagating in the lo-

cally unloaded system with zero strain that follow the sec-
ondary wave, are due to the precompression. They occur at
zero viscosity and survive the effects of low viscosities. The
attenuating compression peaks propagating in the locally un-
loaded system with zero strain are related to the rattling of
particles at the impacted end accompanied by the opening
and closing of gaps. In Figs. 16 and 17 we see that increasing
precompression causes the secondary wave �when it is vis-
ible at all� to decrease in amplitude and width, but that the
other features �primary wave with trailing rarefaction wave
and attenuating oscillatory tail at lower viscosities, single
shock-type pulse at higher viscosities� continue to persist.
Note that greater precompression leads to a stronger �and
therefore faster� primary pulse, an effect that has nothing to
do with the viscosity but that we just point out for complete-
ness of the description.
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FIG. 14. Grain compression along the chain with no precom-
pression at 50 000 iterations. Panel progression shows the chain at
the same instant of time under the effect of increasing dissipation.
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FIG. 15. Pulse propagation in a precompressed chain in which
the precompression is 100 times weaker than the dynamic displace-
ment imparted by the initial pulse. Viscosity increases downward,
as indicated. The scale on the y axis in the first and second panels
goes from −0.01 to 0.1, in the third panel from 0.0 to 0.4, and in the
fourth panel from 0.4 to 0.8.
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FIG. 16. Pulse propagation in a precompressed chain in which
the precompression is 10 times weaker than the dynamic displace-
ment imparted by the initial pulse. Viscosity increases downward,
as indicated. The scale on the y axis in the first and second panels
goes from −0.01 to 0.1, in the third panel from 0.0 to 0.4, and in the
fourth panel from 0.4 to 0.8.

ROSAS et al. PHYSICAL REVIEW E 78, 051303 �2008�

051303-8



Finally, we recall that with weak or zero precompression
the velocity of the primary excitation is related to its ampli-
tude in a nonlinear fashion determined by the nonlinearity of
the medium �and of course by the dissipation that causes a
decrease in the amplitude with time� and essentially unre-
lated to any speed of sound in the medium. On the other
hand, the secondary pulse velocity is related to the compres-
sion of the medium that follows the primary pulse and is
determined by the speed of sound. With increasing precom-
pression, the speed of sound increasingly determines the
speed of disturbance propagation, as we can see, for ex-
ample, in Fig. 17, where all four panels show essentially the
same speed. The larger the precompression, the smaller the
effect of the nonlinearity; at sufficiently high precompression
relative to the compression caused by the initial pulse, the
medium effectively becomes linear.

The introduction of relatively large gaps in the initial dis-
tribution of granules causes the system to no longer behave
as a collective entity and it will instead resemble a granular
gas. We have determined that gaps up to size of order 10−5 in
our dimensionless units lead to behavior similar to that of the
original system. However, beyond this the loss of energy and
the character of the excitation begin to change drastically.

IV. SUMMARY

In this work we have explored the interplay of nonlinear-
ity, discreteness, and dissipation in a one-dimensional dense
granular chain. In particular, we have expanded on our ear-
lier demonstration of an interesting two-wave structure ob-
served in a dissipative granular chain excited by a �-force
applied to a single grain �6�. One might expect a one-wave
structure such as an attenuating solitary wave or an attenuat-
ing shock wave—the observation of a complex two-wave
structure is certainly unusual. This structure, which occurs at
low viscosities �but requires nonzero viscosity�, consists of a

primary wave characteristic of a discrete nonlinear nondissi-
pative sonic vacuum, and a secondary shocklike long wave
due entirely to intergrain contact viscosity. The high velocity
gradients in the narrow primary pulse lead to its relatively
rapid attenuation, which we have shown numerically to be
exponential. We have furthermore shown that the decay rate
is essentially proportional to the viscosity �, with small cor-
rection terms of O��2�. During its lifetime, the speed of the
primary pulse is related to its amplitude in the same way as
in a nondissipative chain �1–3,5�, but now they both decrease
with time as the primary pulse dissipates. Some of the dissi-
pated energy is simply lost, while some of the initial energy
of the primary pulse is transferred to the secondary pulse
caused by the compression left behind by the primary pulse
�which would not occur in the absence of viscosity�. The
much smaller velocity gradients in the secondary pulse cause
it to be very long-lived, and its speed is essentially the local
speed of sound. Below a critical viscosity the secondary
pulse develops a dispersion-induced oscillatory front. There
are thus three distinct time scales in this problem: An ex-
tremely short scale for the formation of the primary pulse, a
relatively rapid time scale of attentuation of the primary
pulse, and a very slow time scale for the eventual attenuation
of the secondary pulse. At higher viscosities it becomes less
and less appropriate to think of the primary and secondary
pulses as separate entities. Instead, one observes a spatially
lengthening excitation that presents a monotonic front. This
description is appropriate after a very short time during
which there is always a primary pulse, with formation and
evolution characteristics essentially independent of the vis-
cosity. But this primary pulse is dissipated very quickly at
higher viscosities and most of the dynamical regime is domi-
nated by the shocklike wave. We have provided a particu-
larly detailed picture of the formation and evolution of the
structure when the grains are initially in contact with one
another but without precompression �sonic vacuum�.

We also explored the consequences of relaxing the initial
configuration, particularly to the case of initial precompres-
sion. We found that as long as the precompression is small
compared to the dynamical compression produced by the
initial velocity impulse, the features described above are still
observed, albeit somewhat complicated by the appearance of
a rarefaction wave and a tail of attentuating compression
peaks propagating in the locally unloaded system with zero
strain behind the secondary wave. As before, there are dis-
tinct primary and secondary waves when the viscosity is low,
and �except for very short times� a single shock-type pulse
when the viscosity is high. We also observed that increasing
precompression leads to increasingly linear behavior in
which any oscillatory features decrease in amplitude, and the
excitation propagates at essentially the speed of sound in the
medium.

Finally, we briefly explored the opposite relaxation of the
initial condition, namely, the effect of initial gaps between
the grains. When these gaps are extremely small, of size 10−5

or smaller in our dimensionless units, the behavior is similar
to that of the chain without gaps, but beyond this the char-
acter of the dynamics of the excitation changes drastically.
We have not explored this regime in detail.
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FIG. 17. Pulse propagation in a precompressed chain in which
the precompression is one-half as large as the dynamic displace-
ment imparted by the initial pulse. Viscosity increases downward,
as indicated. The scale on the y axis in the first and second panels
goes from −0.01 to 0.1, in the third panel from 0.0 to 0.4, and in the
fourth panel from 0.4 to 0.8.
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We expect the two-wave phenomenon involving vastly
different length and time scales to occur in other non-
linear discrete dissipative systems under conditions of
short pulse loading. Examples might include femtosecond-
laser generated pulses, waves generated in atomic lattices
by bombardment of low density beams of ions, and waves
in three-dimensional packings of spherical beads immersed
in liquid under short-duration plane explosive loading.
While our analysis has focused on one-dimensional chains,
we expect the phenomenon to occur in systems of higher
dimensions as well, where issues of geometry of the con-
stituents and of the initial loading introduce additional inter-

esting variables. Work along these various directions is in
progress.
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